Exercise 42

Fanciful shapes can be created by using the implicit plotting capabilities of computer algebra systems.
(a) The curve with equation

$$
2 y^{3}+y^{2}-y^{5}=x^{4}-2 x^{3}+x^{2}
$$

has been likened to a bouncing wagon. Use a computer algebra system to graph this curve and discover why.
(b) At how many points does this curve have horizontal tangent lines? Find the x-coordinates of these points.

Solution

Below is a graph of the curve.

There are seven points where the tangent line is horizontal.

Differentiate both sides with respect to x and then solve for y^{\prime}.

$$
\begin{gathered}
\frac{d}{d x}\left(2 y^{3}+y^{2}-y^{5}\right)=\frac{d}{d x}\left(x^{4}-2 x^{3}+x^{2}\right) \\
\left(6 y^{2}\right) y^{\prime}+(2 y) y^{\prime}-\left(5 y^{4}\right) y^{\prime}=4 x^{3}-6 x^{2}+2 x \\
y^{\prime}=\frac{4 x^{3}-6 x^{2}+2 x}{6 y^{2}+2 y-5 y^{4}}
\end{gathered}
$$

To find the x-coordinates of the points where the tangent line is horizontal, set $y^{\prime}=0$ and solve for x.

$$
\begin{aligned}
y^{\prime}=\frac{4 x^{3}-6 x^{2}+2 x}{6 y^{2}+2 y-5 y^{4}}=0 \rightarrow & 4 x^{3}-6 x^{2}+2 x=0 \\
& 4 x\left(x-\frac{1}{2}\right)(x-1)=0 \\
& x=\left\{0, \frac{1}{2}, 1\right\}
\end{aligned}
$$

